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Diffusion without constraints
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The consideration of developing open systems, which show structure formation like
the temporal development of bubble size distribution during foam decay leads us to a
new approach to diffusion processes. In this context, we refer to our articles The Apol-
lonian Decay of Beer Foam – Bubble Size Distribution and the Lattices of Young Dia-
grams and their Correlated Mixing Functions (S. Sauerbrei E.C. Haß, P.J. Plath, Discrete
Dynamics in Nature and Society submitted and accepted) and On the Characteriza-
tion of Foam Decay with Diagram Lattices and Majorization (S. Sauerbrei U. Sydow,
P.J. Plath Zeitschrift für Naturforschung A, Submitted). By the join of partition dia-
grams and their permutations a structure is derived, which realizes all possible distribu-
tions. Transitions containing negative probabilities become possible and the intrasystem
Shannon entropy shows an oscillating behaviour. Our partition-permutation-structure
enables a description of positive and negative diffusion processes – or of diffusion pro-
cesses without constraints. The characteristics of the partition-permutation-structure
are comparable to the properties of our foam decay.
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AMS subject classification: 03G10

1. Experimental

For our new measurements we take a CCD-camera (CV-M10 CCD camera;
lens 0.5×; display detail 1.3×1.0 cm) and a cold light source (KL 2500 LCD). A
20 ml non-foamed beer (Warsteiner) at 24±1◦C poured in a rectangular glass ves-
sel (2.5×2.5 cm) is frothed up with ultrasound (Ultrasonik 28×; NEY) for 13 s
until there is no more increasing foam volume [1]. After frothing up we take pic-
tures of the decaying foam in 10 s intervals. To obtain bubble size distributions
from the foam pictures for a statistical evaluation we have acquired as follows:
the bubble sizes (bubble diameter d[10−4 m]) are divided into 10 size intervals,
which are normed to unity: (0 < d < 1.73: 0.1; 1.73 < d < 3.46:0.2; 3.46 < d
< 5.19:0.3; . . . 13.84 < d < 15.57:0.9; 15.57 < d: 1). The ratio of the number of

∗Corresponding author.

153

0259-9791/07/0800-0153/0 © 2006 Springer Science+Business Media, Inc.



154 S. Sauerbrei and P.J. Plath / Diffusion without constraints

bubbles within an interval to the total number of bubbles at time t(s) represents
the relative frequency νi . The consideration of the temporal development of the
bubble size distributions and of the Shannon entropy [2], respectively, confirms
our last measurements [1]. The treatment with ultrasound leads to a very narrow
distribution in the beginning which develops to a multi-model distribution at the
end of the rearrangement phase (figures 1–4). In figure 5 the temporal develop-
ment of the bubble size distributions is plotted as a three-dimensional diagram,
which shows very well the oscillating behaviour of single bubble size intervals.
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Figure 1. The narrow bubble size distribution 10 s after being frothed up with ultrasound.

Figure 2. The corresponding foam picture of the narrow bubble size distribution after 10 s.
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Figure 3. The multi-modal bubble size distribution after 250 s.

Figure 4. The foam picture of the multi-modal bubble size distribution after 250 s.

The Shannon entropy I (equation (1)) of the bubble size distributions
increases up to a maximum and oscillates more or less (see figure 6).

I (γ ) = −
n∑

i=1

νi ldνi . (1)

The multi-model distribution at the end of the rearrangement phase of the
foam and the oscillating behaviour of the Shannon entropy are significant char-
acteristics of the temporal development of the bubble size distributions and these
characteristics are representative for a lot of different beers.
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Figure 5. The temporal development of the bubble size distributions as a three-dimensional diagram.
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Figure 6. The temporal Shannon entropy development of the bubble size distributions shown in
figure 5 exhibits a more or less oscillating behaviour.
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Another characteristic is the complicated exponential decay of the foam
volume [1], which is measured for Warsteiner Beer too. In table 1, we see the
coefficients b and c of the exponential decay law of higher order (equation (2))

V = V0,0 exp(−bt − ct2.5) (2)

Table 1
The coefficients of the exponential decay law of higher order V = V0,0 exp(−bt − ct2.5) in equa-
tion (2) and of the single processes: drainage V1 = V0,1 exp(−bt) in equation (3) and rearrangement
V2 = V0,2 exp(−ct2.5) in equation (4) for Warsteiner Beer. The decay is measured at different tem-
peratures T (22±1◦C, 10±1◦C and 0±1◦C) and for different sizes of measuring cylinders (100 ml
with diameter d = 2.6 cm, 250 ml with d = 3.6 cm, and 500 ml with d = 5.0 cm) combined with cer-
tain initial volumes V0 of non-foamed beer: 20 ml non-foamed beer in the 100 ml measuring cylinder
(20/100), 50 ml in the 250 ml measuring cylinder (50/250), and 100 ml in the 500 ml measuring cyl-
inder (100/500) are frothed up with ultrasound. We like to express the notation 20/100, 50/250 and
100/500 with k = V0/d: k(20/100) = 0.7[10−3 m2], k(50/250) = 1.4[10−3 m2] and k(100/500) =

2.0[10−3 m2].
T [◦C] k = V0/d [10−3 m2] Equation V0,i b c

22±1◦C 0.7 V 38.73 5.4 × 10−3 4.7 × 10−7

V1 39.47 6.29 × 10−3

V2 20.00 1.13 × 10−6

1.4 V 93.59 3.57 × 10−3 2.56 × 10−7

V1 96.08 4.37 × 10−3

V2 50.00 5.13 × 10−7

2.0 V 214.30 3.11 × 10−3 1.02 × 10−7

V1 219.90 3.66 × 10−3

V2 110.00 2.61 × 10−7

10±1◦C 0.7 V 43.42 3.11 × 10−3 4.3410−7

V1 44.60 4.11 × 10−3

V2 28.56 7.50 × 10−7

1.4 V 99.00 2.88 × 10−3 2.87 × 10−7

V1 101.60 3.69 × 10−3

V2 58.73 4.86 × 10−7

2.0 V 208.90 2.60 × 10−3 2.13 × 10−7

V1 214.60 3.35 × 10−3

V2 129.80 3.85 × 10−7

0±1◦C 0.7 V 35.16 2.98 × 10−3 3.99 × 10−7

V1 36.15 3.97 × 10−3

V2 22.00 6.36 × 10−7

1.4 V 80.23 2.52 × 10−3 2.53 × 10−7

V1 82.36 3.30 × 10−3

V2 52.92 4.42 × 10−7

2.0 V 167.00 2.94 × 10−3 1.39 × 10−7

V1 171.00 3.52 × 10−3

V2 95.12 3.14 × 10−7
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for different temperatures T (22±1◦C, 10±1◦C and 0±1◦C) and different sizes
of measuring cylinders (100 ml with diameter d = 2.6 cm, 250 ml with d =
3.6 cm, and 500 ml with d = 5.0 cm) combined with certain initial volumes V0
of non-foamed beer (20 ml non-foamed beer in the 100 ml measuring cylinder
denoted by 20/100, 50 ml in the 250 ml measuring cylinder, 50/250 and 100 ml
in the 500 ml measering cylinders, 100/500), which are frothed up with ultra-
sound. Here, we like to introduce a new notation: let k be the ratio V0/d of the
initial volume of the non-foamed beer V0 and the measering cylinder diameter
d. Then we obtain k(20/100) ≈ 0.7[10−3m2], k(50/250) ≈ 1.4[10−3 m2] and
k(100/500) = 2.0[10−3 m2]. Additionally, the coefficients b and c of the single
processes drainage and rearrangement in equations (3) and (4) are shown in table
1.

Drainage : V1 = V0,1 exp(−bt) (3)

and

Rearrangement : V2 = V0,2 exp(−ct2.5), (4)

where V0,2 in equation V2 (equation. (4)) is fictitious in contrast with V0,0 (equa-
tion (2)) and V0,1 (equation (3)), which are approximately of the same size and
describe the foam volume after frothig up with ultrasound. The V0,2 character-
izes the fictitious volume in the beginning of the rearrangement phase of the
foam decay by non-considering the drainage process. It is easy to see that V in
equation (2) is a function of V1 and V2 in equations (3) and (4) [1]:

V = f (V1, V2). (5)

We like to conclude the results of our table 1: considering the coefficient b
of the functions V (equation (2)) and V1 (equation (3)) we see that with increas-
ing k↑ and constant temperature Tconst this coefficient diminishes, b↓. This does
not hold for 0 ± 1◦C. At 0±1◦C there is no general tendency for the coeffi-
cient b. The coefficient c of the functions V (equation (2)) and V2 (equation (4))
has the same trend. If k↑ increases, the coefficient c↓ decreases and this trend
holds for all temperatures T . If we let kconst constant and change the tempera-
ture T , one can take from table 1 that with decreasing temperature T ↓ the coeffi-
cient b↓ decreases too, except the outlier 100/500 at 0±14◦C. Under these equal
terms the coefficient c behaves with no tendency. Comparing both coefficients
with constant kconst and Tconst one can see that the b of V is always smaller than
the b of V1 and the c of V is less than c of V2. This is characteristic of the func-
tions V and V1, respectively, V and V2. It follows a summary and an interpreta-
tion of the results:

Tconst k↑ b↓ The smaller b the slower the drainage with increasing
initial beer volume V0 relative to the vessel diameter.
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This does not hold for T = 0±1◦C.
Tconst k↑ c↑ The smaller c the slower the rearrangement with

increasing initial beer volume V0 relative to the vessel
diameter.

kconst T ↓ b↓ With lowering the temperature of the beer
the drainage becomes slower.

kconst T ↓ c There is no influence of the temperature on the
coefficient c.

One can find a detailed description of these processes and their coefficients for
Beck’s beer in our paper The Apollonian Decay of Beer Foam – Bubble Size Dis-
tribution and the Lattices of Young Diagrams and their Correlated Mixing Func-
tions [1].

2. Partition diagrams and their permutations

Our paper On the Characterization of Foam Decay with Diagram Lattices
and Majorization [3] has shown that partition diagrams can be mapped on prob-
ability distributions and the temporal development of our bubble size distribu-
tions is comparable to the progression in a partition diagram lattice generated
by Ruch [4]; we called these lattices Ruch lattices. The partition diagrams were
represented as partition vectors extented with zero elements so that all partition
vectors of the number n have the dimension n. These vectors γ = (γi ) rearranged
in decreasing order of their components have the same trace that means the sum
of the vector components is n:

∑n
i=1 γi = n (equation (7)). To compare these

vectors γ one can sum them partially as in equation (6).

k∑

i=1

γ �
i �

k∑

i=1

γ ′�
i ; k = 1, 2, . . . , n − 1 (6)

and
n∑

i=1

γi =
n∑

i=1

γ ′
i , (7)

where γ � = (γ �
1 , γ �

2 , . . . , γ �
n ) denotes the n-tuple rearranged in non-increasing

order, γ �
1 � γ �

2 , � · · · � γ �
n (we can say that γ � denotes the partition vectors

of a Ruch lattice and γ denotes all partition vectors that means γ includes γ �

and its permutations). The comparisons of the vectors γ � in equations (6) and
(7) are denoted by γ ′ ≺ γ , which means that γ majorizes γ ′. These equations
are the basic conditions of the classical majorization of Muirhead [5], Hardy
et al. [6]. The classical majorization was discussed in detail in our paper [3] and
will be expanded in section 3. By the componentwise comparison of the par-
tial sum vectors Ruch defined lattice structures of partition diagrams, which are
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a1 = (4  0 0 0)

b1 = (3 1 0 0)

c1 = (2 2 0 0)

d1 = (2 1 1 0)

e = (1 1 1 1)

Figure 7. Totally ordered partition diagram lattice for n = 4 and corresponding partition vectors.

totally ordered, and partially ordered, respectively. Partially ordered lattices he
obtained for n � 6, which show so-called incomparable diagrams not holding
equation (6). He mentioned the permutations of partition diagrams that means
the sequence of the partition vector entries changes, but he did not take into
account these permutation diagrams for the lattice structures. He considered a
partition diagram as a representative of its permutations. We like to include these
permuted partition diagrams and vectors γ = (γi ), respectively, to this lattice
structures of Ruch and have to change the condition in equation (6) so that the
partition vectors with their permutations γ (γ � ⊂ γ ) are not sorted as γ �. It is
clear that the traces do not change. Then we obtain equations (8) and (9):

k∑

i=1

γi �
k∑

i=1

γ ′
i ; k = 1, 2, . . . , n − 1 (8)

and

n∑

i=1

γi =
n∑

i=1

γ ′
i . (9)

Otherwise it is the same procedure: a partition diagram as a partition vector is
expanded with zero elements and can be permuted. Then we define an order and
partial order, respectively, by computing and comparing the partial sum vectors
of the partition vectors.

It is important to distinguish between the set of the partition diagrams, the
set of the permutations of one partition diagram, and the set of the partition
diagrams and their permutations. The set of the partition diagrams of n = 4 with
corresponding partition vectors are shown in figure 7 and characterize a totally
ordered lattice. These structures were shown in the works by Ruch [4, 7, 8] and
in our article [3].
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In figures 8 and 9, we see the permutation frameworks of the partition vec-
tors for n = 4. With reference to the frameworks in figures 8 and 9, one has to
differ between the permutations without changing the order of the non-zero ele-
ments of one partition vector (the subsets of the permutations) and all permu-
tations of one partition vector. Figure 8 shows the permutation subsets of the

b1

b7 b2

b8 b3

b9 b5

b11 b6

b12

b4

b10

b1

b2

b3 b4

b5

b6

(3 1 0 0)

(3 0 1 0)

(3 0 0 1) (0 3 1 0)

(0 3 0 1)

(0 0 3 1)

U

=

b7

b8

b9 b10

b11

b12

(1 3 0 0)

(1 0 0 3) (0 1 3 0)

(1 0 3 0)

(0 1 0 3)

(0 0 1 3)

c1

c2

c3 c4

c5

c6

a1

a2

a3

a4

(4 0 0 0)

(0 4 0 0)

(0 0 4 0)

(0 0 0 4)

(2 2 0 0)

(2 0 2 0)

(0 2 2 0) (2 0 0 2)

(0 2 0 2)

(0 0 2 2)

Figure 8. The permutation structures and their subsets of the partition vectors ai = (4 0 0 0),
bi = (3 1 0 0) and ci = (2 2 0 0). The number of the permutations of one partition vector can be
computed by the formula Pn,n1,n2,... = n!

n1! n2! n3!... , whereas the number of factors ni in the denom-
inator is given by the number of sets of equal elements.
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d1 (2 1 1 0)

d4 (0 2 1 1)

d2 (2 1 0 1)

d3 (2 0 1 1)

d5 (1 2 1 0)

d8 (0 1 2 1)

d6 (1 2 0 1)

d7 (1 0 2 1)

d9 (1 1 2 0)

d12 (0 1 1 2)

d10 (1 1 0 2)

d11 (1 0 1 2)

U U =

d1

d2 d5

d3 d6 d9

d4 d7 d10

d8 d11

d12

e (1 1 1 1)

Figure 9. The permutation structure and its subsets of the partition vector di = (2 1 1 0) and the
vertex e = (1 1 1 1).

partition vectors b1–b6 and b7– b12 and their join during the propositional cal-
culus is changing. In figure 9, we see the subsets of the di -vectors. Although the
number of permutations of di is the same as of bi , the structures differ and the
subsets too. It is very interesting that permutations of partition vectors can be
assigned to totally and partially ordered structures. The notation of a1 to a4, b1
to b12, c1 to c6, d1 to d12 and e is given as partition diagrams in figure 10, which
shows the three-dimensional framework of the set of the partition diagrams and
their permutations as a two dimensional projection in the plane. The same struc-
ture we see in figure 11 as a three-dimensional structure projected stereographi-
cally for better understanding. The latter two structures are the join of the struc-
tures in figures 8 and 9. Here the generating principle of the structures above
summarized: each set of vectors can be compared by the partial sums (equation
(6) with reference to the sorted partition vectors γ � of a Ruch lattice and equa-
tion (8) with reference to the permuted partition vectors γ without any order of
the components; γ � ⊂ γ . The lattice structures describe what diagrams are con-
tained in other diagrams. The join of two sets means that all vectors of these sets
are taken into account during the partial sum comparison).

As aforementioned the structure of the partition diagrams and their per-
mutations – we will call it (partition-permutation-structure) pp-structure – can be
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Figure 10. The structure of the set of the partition diagrams and their permutations as a two-
dimensional projection. Later we will see that the diagrams represent macrostates of four tetrahe-
dron dices with the numbers 1–4 (figure 16). The numbers on the right side are the sums of the

macrostate numbers, (table 4).

computed by comparing the partial sum vectors of these diagrams. But it is easy
to see that this pp-structure can also be constructed by the following algorithm:

A diagram γ is called greater than a diagram γ ′, if γ can be constructed from γ ′ by moving boxes
exclusively upward, i.e. from row n to row (n − i) with n > i or in other words, from any row n
containing at least one box, one box moves upward to the higher row (n − 1), if one begins at the
greatest lower bound.

We see an example for the algorithm of the pp-structure in figure 12. Feel free
to compute the pp-structure for n = 5.
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Figure 11. The set of the partition diagrams and their permutations as a three-dimensional lattice
structure projected stereographically.

b12 d4 d7

d8
2
1

3
4 b12

d4

d7

Figure 12. An example for the algorithm using the diagram d8, which transforms into the diagrams
b12, d4 and d7 by moving one box from row n to row (n − 1).
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3. The characteristics of the PP-structure

The pp-structure in figure 10 shows exceptional characteristics. We like to
point out the differences between this structure and the set of the partition
diagrams (figure 7): we map diagrams onto distribution functions and the dia-
gram progression to a diffusion process.

3.1. Join, meet and shannon entropy

The least upper bound (join or lub = a1) and the greatest lower bound
(meet or glb = e) of the partition diagrams characterize a distribution with max-
imum order, i.e. all elements are in the same state (lub) or all boxes are in one
row and an equal distribution (glb), i.e. in each row is one box. One can think
about this progression from lub to glb of the partition diagram lattice in figure
7 as an ordinary diffusion process. However, both the lub (a1) and the glb (a4)
of the pp-structure in figure 10 characterize a distribution with maximum order,
but they differ in the state (i.e. row number n). Here the equal distribution e is
centered in the pp-structure.

If we consider the Shannon entropy I (see equation (1) [2, 4]) of the parti-
tion diagram progression from lub to glb (figure 7), we see that I is monotoni-
cally increasing (table 2).

On the other hand, the non-monotonical Shannon entropy development
of the pp-structure (figure 10) behaves more or less oscillating. We know
I (a1, . . . , a4) < I (b1, . . . , b12) < I (c1, . . . , c6) < I (d1, . . . , d12) < I (e)
and consider for instance the left column of the two-dimensional representa-
tion of the pp-structure (figure 10) and its Shannon entropy development (fig-
ure 13). This is only one possible path, if one begins at partition diagram a1
(lub) and ends at partition diagram a4 (glb). But one does not have to end at
diagram a4, one can end at diagram e too. The partition diagram e is the so-
called point of no return [3] because there exists no (n × n)-stochastic matrix
(transition), which maps diagram e on another diagram. In the following we
like to consider all stochastic matrices and transitions, respectively, with their
characteristics.

Table 2
The monotonically increasing Shannon entropy I of the partition diagrams in figure 7.

Partition diagram a1 b1 c1 d1 e

Shannon entropy I 0.0000 0.8113 1.0000 1.5000 2.0000
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Figure 13. One possible path on the pp-structure from lub to glb (left column of the two-dimen-
sional projection of the pp-structure). The Shannon entropy of this particular progression is oscil-

lating.

3.2. Stochastic matrices as transitions between diagrams

The transitions between all diagrams of the pp-structure in figure 10 are
defined by doubly stochastic matrices (dsm), their inverses (dsm−1), pseudo
doubly stochastic matrices (pdsm), or permutation matrices (pm) with ε as the
identity matrix. The stochastic matrices can be invertible (reversible (rev−) tran-
sition) or non-invertible (irreversible (irr−) transition). Impossible transitions
are denoted by ×. These transitions are impossible because there exists no n × n
matrix M with only positive (dsm, pm) or positive and negative (mixed) entries
(dsm−1, pdsm) and additionally the matrix holds that its row and column sums
are one. A transition becomes impossible if one starts from diagram e. One
ought to change the matrix and vector dimension to obtain a transition, which
is described by a pdsm. An example for an impossible transition, which becomes
possible by expanding the dimension is given in equation (10).

M2,2

(
1
1

)
	=

(
2
0

)
; M3,3

⎛

⎝
1
1
0

⎞

⎠ =
⎛

⎝
2
0
0

⎞

⎠ ; M3,3 =
⎛

⎝
2 0 −1

−1 1 1
0 0 1

⎞

⎠ . (10)

But now we will not go into the particulars of this transitions starting from
diagram e. Table 3 represents all transitions of the pp-structure reading from left
to right that means in rows. We note [3] that transitions (dsm, dsm−1, pdsm,
pm) in each direction between partition diagrams of a Ruch lattice (figure 7) [4]
are possible, if one does not arrive at the point of no return e. Hence, the transi-
tions between each diagram in each direction are defined and have to permuted
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Table 3
The transitions between all diagrams in each direction of the pp-structure in figure 10 reading from

left to right (in rows).

ai bi ci di e

ai pm rev − dsm irr − dsm rev − dsm irr − dsm
bi rev − dsm−1 pm irr − dsm rev − dsm irr − dsm
ci rev − pdsm irr − pdsm pm irr − dsm irr − dsm
di rev − dsm−1 rev − dsm−1 irr − pdsm pm irr − dsm
e × × × × ε

with a permutation matrix to obtain the transitions for the pp-structure (figure
10) in table 3.

The doubly stochastic matrices can be generated by the theorems of
Muirhead [5] and of Hardy et al.[6], which we have discussed in [3] in detail. The
pdsm are products of dsm and inverse dsm and can contain positive and negative
entries, in which the column and row sums of a pdsm are one. These pdsm are
essential for irreversible transitions defined by non-invertible dsm, which we like
to make reversible. By making certain transitions reversible transitions between
incomparable partition diagrams become possible. In figure 14 an example is
shown for generating a pdsm for two incomparable partition diagrams. Note, that
we refer to partition diagram lattices [4] without permutations and that we can
permute the resulting matrices (transitions) to obtain the matrices for a pp-struc-
ture (figure 10). We see (figure 14) that there is always an invertible dsm (reversible
transition) between the lub-diagram (vector (n 0 . . . 0)) and the diagram before the

(n 0 ... 0)

(1 1 ... 1)

(2 1 ... 1 0)

(n-1 1 0 ... 0)

...
...

x y 2.) dsm-1

1.) dsm

3.) dsm

Figure 14. An example for generating a pds-matrix (pdsm) characterizing the transition between
the incomparable diagrams x, y of a partition diagram lattice [4].
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point of no return (vector (2 1 . . . 1 0)). Consequently, one can begin for instance
at a diagram x belonging to two incomparable diagrams x, y, then go to the dia-
gram before the glb (1.) dsm). Then the transition to the lub follows (2.) dsm−1)
and the last transition is the (3.) dsm) to diagram y. The product of these transi-
tions (1.), 2.), 3.)) and matrices, respectively, is a pdsm. This is only one possible
path to obtain the transition matrices, which have as product a pdsm. We con-
clude, that, if transitions between incomparable diagrams are possible, we have to
allow pdsm with positive and negative components.

3.3. Positive and negative diffusion

The stochastic matrices, which we have considered allow transitions between
diagrams, but if we take into account that partition diagrams are comparable to
probability distributions, then the entries of these matrices characterize transi-
tion probabilities. It seems to be unusual defining negative probabilities (dsm−1,
pdsm), but we will discuss it in the following.

At first, reversible transitions in each direction between almost all diagrams
of the pp-structure can only be defined, if we allow stochastic matrices with pos-
itive and negative entries. We know that this statement does not hold for the
diagram e (equal distribution). Additionally, we like to allow transitions between
incomparable diagrams and this is only possible with pdsm. But what do these
negative entries of the matrices mean? If one considers the diagram progression
with its transitions of figure 15, for example – which was already described by
the Shannon entropy in figure 13 – it is clear, that in the beginning (a1 to c1) the
diagrams follow an ordinary (positive) diffusion process as it can be stated for
the diagrams in figure 7. The further progression (c1 to a2) (figures 10 and 13)
is exactly the opposite of a positive diffusion process. The boxes and elements,
respectively, develop with increasing order. This behaviour can be seen as oscil-
lations of the Shannon entropy in figure 13. A maximum order of a distribution
means a minimal Shannon entropy.

This development of increasing order of the boxes (elements) and decreas-
ing Shannon entropy of the diagrams (distributions) characterizes a negative
diffusion process. In figure 15, an example for transitions of negative diffusion is

a1 b1 c1 b7 a2

rev-dsm irr-dsm irr-pdsm rev-dsm-1

Figure 15. Partition diagrams of the pp-structure characterize positive diffusion and negative
diffusion. Additionally we see the transitions (matrices) of these processes.
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given; we see the transitions from diagram c1 to b7 and from b7 to a2, which are
matrices with negative and positive components (irr − pdsm and rev − dsm−1).

Now we consider the bubble size distributions (histograms) normed to unity
with their temporal development: at the beginning after frothing up of the non-
foamed beer the Shannon entropy of the histograms increases monotonically to
a maximum and after a while shows an oscillating behaviour (figure 6). That
is, at the beginning the histograms follow a positive diffusion process (increas-
ing Shannon entropy), but in the rearrangement phase the histograms become
incomparable due to the Apollonian structure formation [1] and the Shannon
entropy increases and decreases by turns. Otherwise there are histograms h at the
time ti , which form and are majorized by histograms h at the time ti+1 : h(ti ) ≺
h(ti+1), that is, we can consider negative diffusion. It is important to mention,
that in case of a transition between two incomparable histograms the Shan-
non entropy can increase or decrease, i.e. we cannot distinguish between positive
diffusion process, respectively, negative diffusion process therein, although the
Shannon entropy changes. But one can assume that if the Shannon entropy dis-
tinctly increases (decreases) there is a positive diffusion process (negative diffu-
sion process).

We conclude: transitions with negative probabilities (defined by matrices with
negatives and positive entries) are peculiar for the pp-structure. This enables a neg-
ative diffusion process and transitions between incomparable diagrams and leads
to more degrees of freedom for the developing system. The pp-structure charac-
terizes diffusion processes in open systems like foam decay with its correspond-
ing bubble size distributions, which eventually leads to multi-modal distributions
and show structure formation. To describe these characteristics it is necessary to
include permutations of the corresponding partition diagrams. The same holds
for the Shannon entropy with its oscillating behaviour.

4. The PP-structure diagrams as macrostates

The pp-structure is even more than a novel approach to diffusion processes
with their distribution functions in open systems. The partition diagrams and
their permutations characterize the macrostates of four tetrahedron dices with
the numbers 1–4, which are comparable to the row number n, figure 16 and
table 4. The macrostates can be computed by the formula of combination with
replacement Cn,i :

Cn,i =
(

n + i − 1
i

)
=

(
2n − 1

n

)
= (2n − 1)!

n!(n − 1)! , (11)

where i is the number of items taken from n elements, here is i = n because
we take all dices (boxes) into account. (One could take only two dices or boxes
i = 2 and combine them with the rows. One would obtain 10 combinations.) If
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2
1

3
4

d8
1*2 = 2

2*3 = 6

1*4 = 4

Σ = 12 = the macrostate 2334

One box in row 2

One box in row 4

Two boxes in row 3

Figure 16. The d8 diagram is comparable to a macrostate. The boxes correspond to four tetrahe-
dron dices and the row number shows the eye number of the corresponding dice (arrows). The
sum of the dice eyes is a characteristic value and decribes the planes of incomparable diagrams in

figure 10.

Table 4
The 35 macrostates of four tetrahedron dices. The first column shows the sum of the eye numbers
of the dices, the second column shows the macrostates. We see the number of the macrostates of
one row in the third column and the number of the microstates (indices) of one row in the fourth
column. The configuration of the macrostates is the same as in the pp-structure (figures 10 and 16).
The number of the macrostates is given by the formula of combination with replacement Cn,i =
(
(2n−1

n
)
), with i = n, and the number of the microstate can be generated by the formula of varia-

tion with replacement Vn,i = ni = nn = 44 = 256 with i = n.

4 11111 1 1
5 11124 1 4
6 11226 11134 2 10
7 12224 112312 11144 3 20
8 22221 122312 11336 112412 4 31
9 22234 123312 122412 113412 4 40
10 22336 22244 13334 123424 11446 5 44
11 23334 223412 133412 124412 4 40
12 33331 233412 22446 134412 4 31
13 33344 234412 14444 3 20
14 33446 24444 2 10
15 34444 1 4
16 44441 1 1

∑ = 35
∑ = 256

we consider the dices as individuals, we obtain the microstates. The microstates
can be computed by the formula of variation with replacement Vn,i = ni = nn =
44 = 256 with n = i .

Now the macrostates can be applied to bubble size distributions. The dices
are the bubbles and the eyes of the dices (row number n) are the bubble size
intervals. That is clear, if one considers figure 16. Remarkably, the connections
between the macrostates which are governed by chance can be described by the
partial order (pp-structure).
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5. Further possibilities for negative probabilities

There are several reasons to introduce transitions with positive and negative
probabilities, that means matrices with negative components like inverse dou-
bly stochastic matrices (dsm−1) and pseudo doubly stochastic matrices (pdsm).
Firstly, we say a transition is reversible, if its corresponding dsm is invertible and
we obtain a dsm−1. If the dsm is not invertible we need a pdsm to define this
reversible transition. To make all diagrams of the pp-structure accessible from
random initial diagrams, all transitions have to be defined reversible. Such tran-
sitions can be experimentally found in the temporal development of our bubble
size distributions, except the transitions to the equal distribution and transitions
starting from the equal distribution.

Secondly, there are bubble size distributions, which behave as incomparable
diagrams. The transitions between incomparable diagrams can only be defined
by pdsm. Incomparable diagrams occur predominantly at the end of the rear-
rangement of the foam decay. In this phase of the foam decay the bubble vol-
umes can change by the diffusion of gas across films. The gas flux from high to
low-pressure bubbles is set by Laplace’s law: �p = 4σ/r . That means, small bub-
bles shrink and large bubbles grow, and distributions become incomparable (see,
e.g. figure 17 and equation (12).

γσ =

⎛

⎜⎜⎜⎜⎜⎜⎝

2
4
6
6
6
6

⎞

⎟⎟⎟⎟⎟⎟⎠

<

=
>

=
=
=

⎛

⎜⎜⎜⎜⎜⎜⎝

3
4
5
6
6
6

⎞

⎟⎟⎟⎟⎟⎟⎠
= γ ′

σ . (12)

If we take into account that the total number of bubbles decreases during
the decay process, one can suppose that the temporal development of the bubble
size distributions is a diffusion process with a sink term S.

∂c

∂t
= D�c + S. (13)

To define transitions between distributions with decreasing number of ele-
ments (bubbles) there is the possibility of the weak majorization. We know the
meaning of the classical majorization:

k∑

i=1

γ �
i �

k∑

i=1

γ ′�
i ; k = 1, 2, . . . , n − 1 (14)
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3

2

3

2

1

1

1

43

1

2

1

(2 2 2 0 0 0) (3 1 1 1 0 0)

Figure 17. The gas flux goes from high to low-pressure bubbles is set by Laplace’s law: �p = 4σ/r .
Large bubbles grow on cost of small bubbles which shrink. We see two bubbles each of the sizes
one, two and three and the corresponding diagram with the vector γ = (2 2 2 0 0 0) on the left.
On the right the bubble sizes have changed to three bubbles of the size one and one bubble each
of the sizes two, three and four because of gas diffusion (arrow) and the diagram with its vector
γ ′ = (3 1 1 1 0 0). In equation (12) the comparison of the partial sum vectors γσ and γ ′

σ shows the
vectors γ and γ ′ are incomparable.

and
n∑

i=1

γi =
n∑

i=1

γ ′
i , (15)

where γ � = (γ �
1 , γ �

2 , . . . , γ �
n ) denotes the n-tuple rearranged in non-increasing

order, γ �
1 � γ �

2 , � · · · � γ �
n .

“The relations (14) and (15) are saying that γ ′ is majorized by γ , (γ ′ ≺ γ ). For a set A ⊂ R
n , γ ′ ≺

γ on A means γ ′, γ εA and γ ′ ≺ γ . Replacement of the equality in (15) by corresponding inequality
leads to the concept of weak majorization. Let γ[i] denote the decreasing rearrangement of γ and let
γ(i) denote the increasing rearrangement of γ .
For γ , γ ′εR

n ,

γ ′ ≺w γ if
k∑

1

γ ′[i] �
k∑

1

γ[i], k = 1, . . . , n (16)

and

γ ′ ≺w γ if
k∑

1

γ ′
(i) �

k∑

1

γ(i), k = 1, . . . , n. (17)

In either case, γ ′ is said to be weakly majorized by γ (γ weakly majorizes γ ′). More specifically, γ ′ is
said to be weakly submajorized by γ if γ ′ ≺w γ and γ ′ is said to be weakly supermajorized by γ if
γ ′ ≺w γ .
γ ′ ≺w γ (γ ′ ≺w γ ) on A means γ ′, γ εA and γ ′ ≺ γ . The origins of the terms “submajorized” and
“supermajorized” lie in the following limited characterizations of weak majorization in terms of linear
transformations:

γ ′ ≺w γ on R
n+ if and only if γ ′ = Pγ for some doubly substochastic matrix P, (18)
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i.e., by some non-negative matrix P = (pi j ) for which there exists a doubly stochastic matrix D = (di j )

satisfying pi j � di j for all i , j . Similarly,

γ ′ ≺w γ on R
n+ if and only if γ ′ = Pγ for some doubly superstochastic matrix P, (19)

i.e., by some non-negative matrix P = (pi j ) for which there exists a doubly stochastic matrix D = (di j )

satisfying pi j � di j for all i , j” [9].

That is, all row and column sums of a doubly substochastic matrix are at
most one (equation (21)) and all row and column sums of a doubly supersto-
chastic matrix are at least one. Now we suppose that P is doubly substochastic,
and γ ′ = Pγ . Then

k∑

j=1

γ ′
j =

n∑

i=1

k∑

j=1

pi jγi , (20)

where

0 �
k∑

j=1

pi j � 1. (21)

In analogous manner equations (20) and (21) holds for doubly supersto-
chastich matrices.

Since we consider a decreasing number of elements (bubbles), we like to
engage in doubly substochastic matrices. In equation (22) and (23), an example
for a doubly substochastic matrix is given. If each entry in a doubly stochas-
tic matrix is diminished (while maintaining non-negativity), then a doubly sub-
stochastic matrix is obtained which maps the vector (3 1 0 0) on (2 1 0 0).
The matrix diminishing the doubly stochastic matrix has negative components,
it charaterizes the sink term S in equation (13).

1
24

⎛

⎜⎜⎝

17 7 0 0
7 17 0 0
0 0 17 7
0 0 7 17

⎞

⎟⎟⎠ + 1
24

⎛

⎜⎜⎝

−1 −7 0 0
−1 −11 0 0
0 0 −11 −1
0 0 −7 −1

⎞

⎟⎟⎠ = 1
24

⎛

⎜⎜⎝

16 0 0 0
6 6 0 0
0 0 6 6
0 0 0 16

⎞

⎟⎟⎠ , (22)

1
24

⎛

⎜⎜⎝

16 0 0 0
6 6 0 0
0 0 6 6
0 0 0 16

⎞

⎟⎟⎠

⎛

⎜⎜⎝

3
1
0
0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

2
1
0
0

⎞

⎟⎟⎠ . (23)

If we like to allow transitions between each diagram of the pp-structure
we have to allow matrices with mixed entries too. These transitions character-
ize reversibility that means negative diffusion or in other words the order of the
system increases (see figure 10 and diagram b7 and a2 for instance). It may be
the Apollonian structure formation [1] in the rearrangement phase, which leads
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to partially increasing order of the bubble size distributions. Other transitions
are between incomparable diagrams. Incomparableness is given if the partition
vectors do not satisfy equation (8). There are transitions between incomparable
diagrams which follow a positive or a negative diffusion process (see the two
vectors γ and γ ′ of figure 17 for instance) or they are only permuted (see fig-
ure 10 and diagram b7 and b3 for instance). In the latter case, the permutations
cause the incomparableness, this may implicate a kind of weight for each row or
we may say the transitions describe a kind of mixture, which consists of diffu-
sion and drift. The reason for incomparable bubble size distributions is the same
as above. The structure formation causes incomparable distributions as we have
seen in this section. It is clear that if we like to take into account the total num-
ber of bubbles during the temporal development of the decay process we obtain
a decreasing number of bubbles and this process is comparable to a diffusion
process with a sink term. Furthermore we have seen that one possible descrip-
tion for diffusion processes with a sink term is the weak majorization. The tran-
sitions of this process consist of two matrices: a doubly stochastic matrix and
a “diminishing” matrix which exclusively contains negative semidefinite entries.
We can summerize that reversibility and negative diffusion, respectively, incom-
parableness, and diffusion with a sink term requires negative probabilities, which
appear as negative components of the transition matrices. These reasons for neg-
ative probabilities we can find in our foam system and that allows us to define
transition matrices with mixed components.

6. Conclusion

The representative characteristics of the foam decay are the incompara-
ble distributions, the multi-modal distributions in the end of the rearrangement
phase, and the oscillating Shannon entropy, which let us assume that the distri-
butions partially follow a negative diffusion process. To characterize this open
system with structure formation and its temporal development of the bubble size
distributions we marginally change the classical majorization and the Ruch lat-
tices. We omitted the order of the vector components with regard to the clas-
sical majorization and permitted permutations of the partition diagrams, which
Ruch did not take into account in his lattices. The comparison via the partial
sum vectors of the partition vectors showed a new structure (pp-structure) with
exceptional properties which are comparable to the characteristics of the foam
decay: the multi-modal distributions are represented by the permutations of the
partition diagrams, the Shannon entropy of vicinal partition diagrams of the pp-
structure behaves more or less oscillating and parts of the pp-structure describe
a positive diffusion process, a negative diffusion process, and a “mixed” diffu-
sion process. Thus the pp-structure characterizes a diffusion process without con-
straints.
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